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Computer simulation of hydrogen diffusion and nuclear 
magnetic relaxation on a disordered lattice 
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Deparunent of Physics, The University of Sheffield, Hounsfidd Road, Sheffield S3 7RH, UK 

Received 3 July 1995 

Abstract. The dipolar nuclear magnetic relaxation rate associated with the hopping diffusion 
of interstitial hydrogen atoms in a disordered alloy is calculated by Monte Carlo methods. The 
principal features of the model system are thal the atoms hop an a spatially disordered may of 
traps and the trapping energy varies from trap Lo trap so I b t  the diffusion of the hydrogen is 
characterized by a distribution of jump rates. The effective jump rate from a trap is assumed to 
have an Arrhenius dependence on temperature causing the distribution of jump rates to depend 
on temperature. Unlike earlier work, the method fully explores the way in which this dependence 
afFects the mean jump rate as weU as providing the means IO calculate the relaration as a function 
of both h o r  frequency and temperature. The mean jump rale is found to deviate from the 
Arrhenius form in a manner that depends on the c " a t i o u  of the hydrogen nuclear spins. At 
a given tempenfure the characlefistic peak in the relaxation rate, which OCCUIS in ordered solids 
when the product of the average jump rate and the h o r  frequency is approximately unity. 
is broadened. becomes asymmetric and is shifted in frequency by the presence of the jump rate 
diseibution. The broadening is found to be less apparent when the relaxation rate is calculated 
as a function of temperature but the asymmetry remains. 

1. Introduction 

In metals and alloys containing absorbed hydrogen, the hydrogen atoms occupy interstitial 
sites in the metal lattice and, except at very low temperatures where there may be tunnelling 
effects 111. diffuse among these sites by a hopping mechanism. In amorphous alloys the 
individual sites may have different structural and chemical environments resulting in a range 
of binding and activation energies which give rise to a distribution of hopping rates. Nuclear 
magnetic relaxation due to the interaction of the nuclear spin dipoles on the hydrogen 
atoms is often used to measure diffusion rates. In ordered alloys theoretical models based 
on lattice diffusion [2, 31 are used to calculate the longitudinal dipolar relaxation rate, 
T;', and allow the hopping rate of the hydrogen to be extracted from the experimental 
data. Such models are capable of giving analytical results for ordered materials but, 
because of the relative complexity of the problem, the construction of theoretical models for 
disordered alloys is a more difficult task. Some recent work by Sholl, however, points the 
way to a theoretical solution by numerical methods [4]. The Monte Carlo WC) method, 
which is complementary to the theoretical approach, has many advantages for relaxation in 
amorphous alloys, principally because dealing with disorder is a daunting theoretical task 
whereas in M C  simulation the inclusion of a wide range of different types of disorder is 
straightforward. 

Theoretical models for ordered materials are aimed at the calculation of the relaxation 
rate as a function of the average interval between bops of the spin dipoles, i. On the 
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other hand, the most obvious experimental methods measure its variation with temperature 
and the contact between theory and experiment is made by assuming an Arrhenius relation 
between i and the temperature. Such a simple assumption can not be made for disordered 
systems if the distribution of jump rates is also temperature dependent. Such a temperature 
dependence occurs in activated processes even if the energy distribution itself is temperature 
independent and in such cases i does not necessarily follow the Anhenius law as we will 
show for a chosen example of disorder. In previous work using MC simulation the dipolar 
relaxation rate in disordered systems [S, 6 7 1  has been calculated in tems of frequency at 
a given temperature mainly because the most straightforward calculations involve the time 
dependence of the spin dipolar correlation function. The temperature dependence of the 
relaxation rate has been largely ignored. 

Nevertheless, some efforts have been made to calculate the temperature dependence 
of the relaxation rate [7, 81. In particular, one example involving two of the present 
authors [7] attempted to obtain the temperature dependence by comparison with the long- 
range diffusion. Temperature was not explicitly part of the model and use of long-range 
diffusion in this way is open to question since the relaxation is related to the motion of the 
spins over relatively short times, that is, comparable with i. The purpose of the present 
work is to develop a computer model in which temperature is an explicit parameter and 
to use it  to calculate the temperature dependence of the dipolar relaxation time, TI .  Since 
computer simulation methods inevitably follow the time evolution of the atomic positions, 
the calculation of the relaxation rate at a given temperature involves two steps, one finding 
the spin correlation function in terms of i and the other essentially determining the value 
of i at that temperature. It is, of course, possible to present the results simply as graphs 
of TI against temperature. However, we have found that there are interesting aspects o f f  
which are worth reporting and we present our method as first involving the calculation of 
the temperature dependence of the average interval between hops of the spins, i, before 
finding the spin correlation function in terms of i from the same MC procedure. The 
relaxation time as a function of temperature is obtained by combining the results of these 
simulations. We are able to show that the disorder causes i to depart from the usual 
Arrhenius behaviour and the effective activation energy over a limited range of temperature 
changes in a characteristic manner with composition. The MC calculations establish the 
relation between the relaxation rate and temperature, which, in principle, allows experimental 
measurements of the relaxation to be exploited to find .I in the presence of energy disorder. 

2. The model 

Many aspects of the present computer model are the same as those of Adnani et al 171. In 
disordered alloys the hydrogen atoms, which carry a nuclear spin I = i, diffuse by hopping 
on a network of interstitial sites in the metal matrix. The nuclear magnetic relaxation arises 
from the random fluctuations of the magnetic dipole coupling between the spins caused 
by the motion. For the MC simulation the network of interstitial sites is modelled by a 
simple cubic lattice which has been distorted to approximate the structural disorder of an 
amorphous alloy. The hydrogen atoms have to overcome an energy barrier to jump to a 
neighbouring site. This energy can be divided into two parts, the site energy, which is the 
energy required to escape the bonding force at the site, and the saddle point energy, which 
is the barrier between neighbouring sites. The metal atoms surrounding the interstitial sites 
are not all identical in an alloy and this, coupled with the structural disorder, is assumed to 
cause a random variation from site to site in both these energies. There is some evidence 
that disorder in the site energy has more effect on the relaxation rate, particularly at low 
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concentration [6]. The assumption is in  this work that there is no spread in the saddle point 
energy and it is conveniently set to zero so that the spin need only overcome the site binding 
energy to hop to a neighbouring site if it is not occupied. For simplicity the site energy 
distribution is assumed to be uniform in the range 

. k - 6 E / Z < E < E + 6 E / 2  (1) 

where d is the mean and 6 E  is the width. Because the saddle point energy is zero this 
distribution alone reflects the distribution in the activation energy of the hopping process. 

In addition to the energy barriers the fraction of the available sites occupied by the 
spins affects the diffusion. The greater the concentration the fewer free sites there are to 
accommodate hops and the more likely it is for a spin to make return hops to the previously 
occupied site. The model simulates different concentrations by changing the number of 
spins in the system and the computer program was written in such a way that this does not 
affect the efficiency very much. The principal difference between the present work and that 
of Adnani et al [7], in addition to the main point of the work which is to introduce the 
temperature dependence, lies in the method used to simulate the hopping mechanism of the 
spins. 

3. The average hopping rate 

Before dealing with the diffusion by the MC model we will draw a number of conclusions 
regarding the average hopping rate which will serve to describe the boundaries of the 
problem. We assume that at finite temperatures a spin can jump out of the energy well on 
the site where it resides at the rate, U. This hopping rate is related to the site energy through 
the Arrhenius rule, 

where vo is the attempt frequency of the classic diffusion model and k is the Boltzmann 
constant In this work uo is assumed to be a constant, independent of temperature. This may 
not be entirely hue in real materials but it is assumed to be a reasonable approximation since 
there is no evidence as far as we know that suggests a strong variation with temperature. 
Due to the spread in site energy equation (2) leads to a distribution of hopping rates. At 
temperature T the highest and lowest rates which correspond to the extremes of the site 
energy are 

The hopping rate distribution function, derived from the uniform distribution of site energy, 
is 

p(v)  = kT/vSE = l/nOIn(r) with r = vma/vmin = and v = nG ( 4 4  

where 5 = voexp(-.k/kT) is the hopping rate associated with the mean energy and p ( u )  
is normalized to unity in the interval r-'!' < n c rl/'. We have written p ( u )  in this form 
to show that, apart from the multiplier, G ,  it is completely specified by the choosing r ,  the 
ratio between the limiting values of v. As will become apparent below, the absolute value 
of C is not required in the calculation of the spin correlation functions. 

In the present work, in which the temperature dependence of the ratio, r ,  is to be 
displayed explicitly, it is convenient to assume that at a certain temperature TO the value of 
this ratio is ro. so that we can use TO and ro as two basic parameters of the model. In the 
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following temperature and energy are given in units of TO and kT0, that is T = @TO and 
E = EkTo, respectively. The hopping rate distribution function then becomes 

p ( u )  = @/nDh(ro )  r =ea'/' (4b) 
where p ( u )  is normalized to unity in the interval 

I/ZQ -'"' < n < ro . ' 0  

The increase of r as the temperature decreases and the change in the distribution p(u).  are 
then immediately apparent from these equations. 

The distribution function p ( u )  in equation (4) reflects only the property of the sites 
on which the hydrogen atoms or spins diffuse. The rate distribution function of the spins 
themselves ps(u)  may be influenced by other factors such as temperature and the fractional 
occupancy, c, of the available sites by the spins. In order to derive ps(u) when the system 
is in equilibrium and, in tum, determine the average hopping rate, i, we need to know how 
the spins are distributed among the various sites. 

We first discuss two extreme cases. In the first place, if the concentration is very high 
and most of the available sites are occupied, ps = p to a good approximation. Secondly, if 
the concentration is low the spins will tend to occupy sites with greater binding energy and 
we may suppose that the spin distribution is skewed by a Boltzmann factor. The presence 
of this factor means that the probability of a spin occupying a site with site energy E is 
proportional to which, according to equation (2). is in turn proportional to l /u .  By 
combining this Boltzmann factor with p ( u )  we have 

normalized to unity in the interval u~exp(-~/@)r~l ' (zQ)  < U < uoexp(-&/O)ro 1/(2Q) . 
The average hopping rates, B, under these extreme conditions can be calculated fiom 

the two distribution functions for very high and very low spin concentrations. For the high 
concentration we use equation (4) to give 

that is 
9, = u o f ( o ,  rO)-' exp(-E/O) = f (@,  r O ) - l O .  (10) 

When there is no spread of site energy equations (7) and (IO) both reduce to the standard 
Arrhenius form for hopping diffusion. Also it can be shown straightforwardly that, given 
ro is finite, f(0, ro) + 1 when 0 + W. From t h i s  we conclude that when there is a 
spread in site energy the mean hopping rate deviates from the Arrhenius rule. The extent of 
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Figure 1. As explained in the text the spread of site energies, which depends on the reduced 
temperature Q and is defined by the parameter Q. causes the mea0 hopping rate to deviate iiom 
the Anhenius law. The extent of the deviation is governed by lhe factor f (0. ro), which is 
shown in the figure as a function of Q for several values of Q. 

the deviation is determined by the function f ( @ ,  ro) which is shown in figure 1 for several 
values of ro. 

In the above BH and FL are strictly the averages over the equilibrium distribution 
functions and whether they truly represent the average jump rates needs to be tested by 
the MC simulation. In the present model at low concentration the motion of each spin is 
independent of the others and each jump is independent of the previous one because the 
binding energies are distributed in a random way over the matrix of sites and each energy is 
attached to an individual site. Under these circumstances the effect of a finite concentration 
can be l i i t e d  to a factor, 1 - c where c is the spin concentration, multiplying the hopping 
rate in equation (IO). This factor takes into account the reduced availability of vacant 
neighbouring sites into which spins can jump. At high concentration the probability of a 
jump depends on the immediate neighbours around each vacancy and it is not clear that 
the simple average i7, is applicable in this case. The factor of 1 - c still applies however, 
together with any effects from the more highly correlated motion. 

The form of equations (7) and (10) also suggests an interpolation, linear in c, which 
could be applied to find the average jump rate for an arbitrary spin concentration. That is, 
we write 

ii/% = f(o, ro)k-'e-'J' (11) 

?/SO = f ( @  ro) l-zEe'//B (12) 

We have introduced the mean interval between hops, f = l/C, and to = l/uo in equation 
(12) because nuclear magnetic relaxation rates are usually expressed in terms of w?, where 
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o is the Larmor frequency. This interpolation is highly speculative but along with the 
expressions for ~ J H  and EL it provides a framework for the calculation of the mean hopping 
rate by the MC method. In what follows we will show that our MC simulation demonstrates 
the validity of these equations. 

4. The Monte Carlo simulation of the difFusion 

In the MC simulation N, spins diffuse on a distorted cubic lattice under periodic boundary 
conditions which are there to remove surface effects and prevent the loss of spins. Each 
lattice point has six nearest neighbours and is assigned a site energy from the distribution 
defined in equation (1) so that the resultant distribution in hopping rates is p(u) given 
in equation (4). The pre-exponential factor is a constant and can be used as the unit of 
the hopping rate. During one MC step each of the spins makes an attempt to jump to 
its neighbouring site. At each attempt an MC procedure is carried out to test whether an 
attempt is successful. The procedure consists of two stages, the first being an attempt by 
the spin to escape from the site and the second being the possibility of moving into a vacant 
site. To carry out this procedure a number ni between zero and unity is chosen at random 
and compared with the hopping rate vi associated with the site on which the spin i resides. 
If ni < vi the first stage of the jump is successful. One direction from the six is chosen at 
random and, if the neighbouring site in that direction is vacant, the jump is made and the 
event is successful. 

During each MC step only a fraction of the total number of attempts is successful 
and accepted. The acceptance rate, p ,  which we define as the number of accepted events 
divided by the total number of spins in the system, depends on the spin concentration, 
the temperature and the energy distribution. For example, at a given energy distribution p 
decreases as the temperature is lowered and the efficiency of the MC calculation diminishes. 
In order to keep the acceptance rate at a suitable value on average under all  conditions, the 
actual hopping rates were multiplied by a factor A, which was adjusted according to the 
requirements of the simulation. 

On average all the spins jump in a period equal to mean time between jumps, 4 [7]. 
Thus T can be defined as the mean period in which Ns successful jumps take place and 
in computer units this is the number of MC steps required for these Ns jumps. Given the 
above definition of p the mean interval, 5, satisfies the relation p5 = 1, where p is the 
average acceptance rate per step. In this equation A has been assumed to be unity. If the 
value of A is changed, p changes proportionately so that pi M A. This relation leads 
directly to the useful equation 

p?/p04 = A /A0 or i = 4o poA/pAo (13) 
in which the subscript 0 indicates that the quantities are determined at a reference 
temperature. From this equation values of the mean interval between jumps at different 
temperatures may be calculated relative to one another. The factor, A, is not a function of 
temperature but is changed only to keep the acceptance rate at a reasonable level in order 
that the efficiency is not seriously affected and there are a reasonable number of MC steps 
in the interval i. Without attention to the latter there could be too few data points in the 
spin correlation functions. The adjustments to A were made under the restriction that the 
highest hopping rate was less than unity, the maximum value given by the random number 
generator. 

The spin densities and i were calculated from the MC simulation after an initial stage to 
obtain thermal equilibrium. Figure 2 shows how the jump rate distribution function depends 
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Figure 2. Simple arguments lead lo the conclusion that energy distribution. ps, of the hydrogen 
mms is equal to the distribution. p. of site energies, E ,  when the concentration, e, approaches 
unity. The condition, ps = p as a function of energy is given by the horizontal line (a). On the 
other hand at low concentration pr is modified by a Bolmann term which, as shown by c w e  
(b), increases the population of the sites for which E is h e  and negative. The data points 
show the extent IO which these ideal conditions an satisfied in the MC simulation. 

on the spin concentration. In this figure the distribution, p , ( E / k ) ,  is given in terms of the 
energy rather than U so that the horizontal line (a) represents the condition ps = p and the 
line @) is the form of p X ( E / k )  at c -+ 0. The coincidence between the MC calculation 
and the analytical forms at these extremes is clearly seen. These results give us confidence 
that the simulation can correctly predict the equilibrium conditions. 

The data points of figure 3 show the results of the MC calculations of ?/to, displayed 
as a function of temperature. The dashed lines are the values of ?/to at c = 0 and 1 and 
the solid lines are obtained from the interpolation of equation (12). The general agreement 
between the simulation and the interpolation is clearly excellent and in practical terms this 
gives us the oppomnity of using equation (12), with consequent savings in computer time, in 
the determination of the temperature dependence of the relaxation rate described in the next 
section. The deviation of 5 from the Arrhenius rule is obvious for all spin concentrations 
other than 0.5. This concentration seems to hold the balance between the two extreme jump 
rate disnibutions, which cause opposite deviations from e-clO. The MC results seem to 
imply that the effect is simply a consequence of the way in which the thermodynamics 
of filling the energy wells changes with concentration. At low concentration the sites 
act as traps for the diffusing spin which become relatively deeper at lower temperatures. 
Since there is a tendency for the deeper traps to be filled, i, drops below 3. On the other 
hand, at high concentration most sites are occupied and trapping is less important since the 
vacancies tend to follow the paths marked out by the shallower traps for which U diminishes 
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Figure 3. The data points obtained from the MC simulation demonsme how the the mean 
interval behveen jumps. .i. deviates from the Arrheniur law when there is a spread of site 
enerpies. The solid lines through the data points are obtained from the interpolation given in 
equation (12) and show that the interpolation can be used to find the temperahue dependence of 
the jump interval to high accuracy. The dashed lines, which are the extremes of the deviation 
at concentrations, c = 0 and I ,  are calculated from equations (IO) and (71, respectively. 

less rapidly than 5 as the temperature falls. 
These results have their counterparts in theoretical and MC calculations of Limoge 

and Bocquet (9) for the random walk of a single atom on a lattice with site and saddle 
energy disorder. The low-concentration results given above are consistent with the reduced 
diffusivity of the single atom found by Limoge and Bocquet when only site disorder is 
present, that is when trapping is predominant. On the other hand the trapping effect is 
absent for saddle disorder and the atom then tends to proceed along the path of least barrier 
height with very similar consequences for the mobility to that found in the high-concentration 
case. Limoge and Bocquet have pointed out that diffusion in experiments on disordered 
systems is usually found to have Arrhenius-like behaviour and have argued that this is the 
result of balance between the effects of the site and saddle disorder, both of which are likely 
to be present in real materials. Since it is reasonable to suppose that the effect of saddle 
disorder is, at least qualitatively, independent of composition, the present results show that 
in experiments with finite hydrogen concentration this balance can only be achieved at low 
concentration. 

The departure from the Arrhenius form is only significant over a fairly large number 
of orders of magnitude in D. Experiments, for example nuclear magnetic relaxation, are 
typically restricted to about three orders and it can be shown that the departure from 
Arrhenius behaviour is probably not large enough to be detected over this range. However, 
the MC simulation shows that the effective activation energy over this limited range, which 
could be measured experimentally, changes significantly with composition. Thii feature 
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could be used to detect the presence of disorder. It should be pointed out that this applies 
only to experiments which measure C directly since the root mean square distance travelled 
in the diffusion is reduced by correlation effects at high concentration [7]. 

5. The correlation functions and the relaxation rate 

The longitudinal relaxation rate, T;’, due to the random fluctuations in the magnetic 
coupling of the nuclear spin dipoles on the hydrogen atoms caused by the diffusion is 
I101 

T;’ = ;y%21(1 + l ) [ J , ( W )  + J 2 ( 2 0 ) ] .  (14) 

Here is the relaxation time, o the Larmor frequency and J1 and 52 are the spectral 
densities of the time-dependent spin correlation functions GI@) and Gz(t). For present 
purposes Gl( t )  and G&) for a system with N8 spins are defined as [7] 

Gm(t) = (1,”s) CFmjk(O)F:jr(t) (15) 
j k  

with 
Fi jt(t) = l;3 Sin 6,k COS 6jk eXp(-i@jk) 

(16) 

where m = 1 or 2, the indices j and k run from 1 to N,, k # j and rjk@jk@jjx are the 
co-ordinates of the vector between the spins j and k .  

In order to calculate the time dependence of the spin correlation functions, MC runs 
were made in the manner described in the section on diffusion. The correlation functions 
were evaluated at each MC step after thermal equilibrium had been reached and in order 
to reduce the statistical errors many runs, each with the same p ( v )  but with a different 
spatial disorder, were carried out. The final results were the mean values of the correlation 
functions taken of these NIIS and the nuclear magnetic relaxation rate was found from them 
by Fourier transform. 

npical results are shown in figures 4, 5 and 6 in which the normalized correlation 
functions for three different temperatures and spin concentrations, c, are plotted. Since 
GI(?) and Gz(t) have no significant differences apart from the normalization factor the 
values of only one function at each temperature are plotted. The solid lines in the figure 
are the least-squares fits of the correlation functions to the sum of decaying exponentials. 
Five exponentials were used in the sum in order to give good fits for all times, t ,  used in 
the simulation. The unit of time has been chosen to be the mean time between diffusion 
hops, ?, calculated in the manner described in the previous section. Consequently, if there 
is no disaibution of jump rates, all the normalized correlation functions for a given c would 
appear identical irrespective of temperature. When there is a distribution, lowering the 
temperature increases the spread and causes a change in shape of the correlation function 
which has the effect of reducing its overall rate of decay. The effect becomes less severe 
as c decreases. 

The use of a sum of decaying exponentials for G,(t) allows their Fourier transforms, 
the spectral density functions, to be found analytically. Spically about 30 nins were used 
to find average values of G,(t) to which the sum of exponentials was fitted. This method 
also has the advantage of smoothing out statistical variations in G,(t) which can occur over 
periods of the order of 5. In the direct Fourier transformation of G,(t) these variations 
cause the spechal density function to fluctuate in turn about its mean value at large ox 

F.jX(r) = r , ~ ~  sin2@,, exp(-2i@jk) 
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Fie 4. The normalized time-dependent spin wrrelation functions. G(r), at various reduced 
tempera"., e. Here G(r) s m d s  for either G I  (I) or Gz(t) since after normalition they were 
found to be indistinguishable. The concentralion of the spins is c = 0.1 and the panmrter, 
Q. which determines the spread of rite energies. is 50. The data points nre obtained from the 
MC simulation and the solid lines are obtained fmm lhe sum of five exponential functions 3s 
indicated in the text. 

(-10). In order to keep these fluctuations to about 50% of the mean, typically 320 runs to 
calculate the average G,(t) are required. There is essentially no difference between this 
mean and the Fourier transform obtained from the exponential sum after 30 runs. The use 
of exponentials thus results in a considerable saving in computing time. Even if the fitting 
method is used it is still important to use a fairly large number of runs, especially in the 
first 5r  or so in the simulation of G,(t) because during this period the correlation functions 
change most rapidly and the quality of the data there affects the precision with which the 
spectral densities at large WT can be determined. 

The relaxation rates calculated from the correlation functions in figures 4-6 are shown 
by the solid lines in figures 7-9 in the form of logarithmic plots of oT;' against OS. Since 
the principal aim of the simulation is to demonstrate the effect of disorder rather than give 
absolute values, the relaxation rates displayed in the figures are given in arbitrary computer 
units. They have been normalized by the spin concentration so that the maximal values are 
approximately the same for all the calculations. The previous figures 4-6 show that the 
distribution of jump rates causes an overall reduction in the decay rate of the spin correlation 
functions. Consequently the peak in the relaxation rate flattens and shifts towards smaller 
or as the temperature is lowered and spread in jump rates increases. 

So far, p ( u )  and J have been specified by the parameters ro and 0, mainly to facilitate 
the discussion of the diffusion. It was shown in equations (4a) and (4b) that p ( v )  can be 
equally well be expressed in terms r and the factor 5. It is easily shown from equation (8) 
that f(0, ro) can be expressed in the same way. Consequently, in figures 4-6 the different 
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Figure 5. The normalized time-dependent spin carrelation functions, G(t), at various reduced 
temperatures, Q, and concentration, c = 0.5. The meaning of the symbols is the same as 
in figure 4. The overall d u c t i o n  in the decay rate of the correlation which resulb from the 
increase in the width of the distribution of jump rates when the temperature is lowered is clearly 
demonstrated. 

correlation functions may be characterized by the parameter r rather than 0 and in fact 
the curves corresponding to 0 = 4, 1 and 0.8 also correspond to r = 2.7, 50 and 133, 
respectively. The temperature appears in I but this simply scales the units of time which 
are given by 5. In the Fourier transforms of figures 7-9 the scaling occurs in o which 
has units of l/?. Thus the correlation functions and the corresponding relaxation curves 
may be regarded as having a fixed temperature and a characteristic distribution width, r .  
It should be noted that the units of frequency are not the same from curve to curve unless 
f(0, r,#-2c happens to be equal to unity. 

With these features in mind it is possible to make comparison with the calculations 
of Adnani et al [7]. The parameters adopted in the present simulation are not identical, 
nevertheless, inspection of the results shows that the shifts and increases in the widths of 
the peaks due to the disorder are comparable with those of the earlier work. For example, 
the y v e s  with r = 2.7 reproduce approximately the peaks found in ordered systems and 
demonstrate that the maxima have the characteristic shift towards lower or as the spin 
concentration increases. The reader is referred to the earlier paper [7] for a discussion of 
the relaxation curves and a comparison with previous work in general. There is, however, 
one significant exception. In Adnani el d the peaks in oT;’ were found to be almost 
symmehical, whereas in the present work the slope of UT;’ is generally greater on the low 
or side of the maximum. This asymmehy does not appear to arise from the improvement 
in the statistical accuracy of the present work but is due to systematic differences in the 
shape of the spin correlation functions. The cause may be the very different MC methods 
used in the two simulations. In the earlier simulation only one spin jumped at each MC 
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Figure 6. The normalized timedependent spin correlation functions, G(tA at various reduced 
temperatures. 0, and concentrarion. c = 0.9. The meaning of the symbols is the same as in 
figure 4. Figures 4-6 show how the effen of the disuibution in jump Iiltes increases with spin 
COnCentnricn. 

step, the choice of spin being determined by the various probability factors. In the present 
work a varying number of spins, around one tenth of the total, are allowed to make jumps. 
The two methods apparently lead to different decay rates of the correlation functions for 
times t .c P even though there is general agreement overall. 

The parameter UT,-' has been chosen to emphasize that in figures 7-9 o is the variable 
and P is a constant dependent on temperature. The Fourier transform of an exponentially 
decaying spin correlation function, e-''', is r/(l + d r 2 )  and, especially in regard to 
experiments, U is usually held constant and r is a variable dependent on temperature, giving 
rise to the characteristic maximum observed in T;'. The extra factor w is required to provide 
symmetry between these two parameters and give the peaks in the figures. It is possible 
to interpret the experimentally observed dependence of relaxation rate on temperature in 
ordered systems by means of such UT;' against Or curves. The same can not be done for 
the disordered case unless it is possible to make allowance for the temperature dependence 
of p(u) and f (0, ro). In order to calculate a relaxation curve which accounts for these 
dependences in the present model it is necessary to choose a particular distribution of jump 
rates through the parameter ro and at each temperature carry out an MC simulation to find 
the correlation function and its spectral density. The output of the MC simulation is a 
family of curves of TI against In(@?) with different values of 0. ?he requisite values of 

follow the locus of a curve through this family giving TI as a function of or while 
simultaneously allowing mi and 0 to satisfy equation (12) and fixing o at an appropriate 
value. The relaxation rate may then be obtained as a function of either w i  or 0. 

In figures lO(a>-(c) the calculated values of the relaxation time, TI, are plotted as a 
function of the reduced temperature for c = 0.1,O.S and 0.9 and the parameters ro = 50, 
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Figure 7. The d a t i o n  rate. T;', obtained hom the 
Fourier transform of the spin conelation functions given 
in figure 4. For comparison with wlier  calculations of 
the relaxation rate, the figure plots the product mTC' in 
arbitnry computer units as a function of of, where o is 
the nuclear Larmor frequency and i is the mean interval 
between jumps of the spins. As explained in the text, 
the distribution of jump rates for curve (a) is small and 
this curve is similar to the results of earlier calculations 
of lhe relaxation me for ordered systems. The general 
shift to lower oi and the increase in width of the 
c w e s  for lower temperatures ar which the distribution 
is significant refleets the changes in the spin correlation 
functions. 

Fwre 8. The relaxation rate, T;', obtained from the 
Fourier transform of the spin wmlation functions given 
in figure 5. See the captions of figures 5 and 7 for the 
meaning of the curves and symbols. 

I O  
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wi 

Figure 9. The relaxation rate, Ti'. obtained f" the 
Fourier transform of the spin conelation functions given 
in figure 6. See the captions of figures 6 and 7 for the 
meaning of the curves and symbols. 

2 = 10 and @m = 1 . 7 ~  IO4. The solid lines in these figures give TI for ordered systems, that 
is r = 1, and the relaxation time rather than the rate. has been plotted since this parameter is 
normally used in experiments. Figure 10(b), for which c = 0.5, may be regarded as a plot of 
TI against either 1 / 0  or In(@?) since these two variables are equivalent when f(@, r ~ ) ' - ~  
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Figure 10. (a)-@). The relaxation time, TI, in arbitmy computer units obtained from Ihe 
MC simulation as explained in Ihe text and plotted as a function of the reciprocal temperalure. 
1 f 0. for spin concentrations, c = 0.1, 0.5 and 0.9 respectively. The solid line for ro = 1 is the 
relaxation time for an ordered syStem. When a distribution ofjump rates (ro = 50) is present the 
dip in the relaxation time becomes asymmeuical having a smaller slope al low temperatures. The 
asymmetry increases with c. The shift of Ihe minimum to higher tempenfures is a consequence 
of the shifts in the relaxation curves in figures 7-9. This shin is apparently enhanced for c = 0.1 
and reduced for c = 0.9 on m u n t  of the difference in the mean jump interval. i. in the m e r  
shown in figure 3. The dip in the relaxation also becomes broader as c incremes. reflecting the 
difference in the temperarure dependence (effective advation energy) of i. 

is equal to unity and i has the Anhenius form. With this equivalence in mind it can be 
seen that the shift of the minimum in TI with respect to the solid line arises from the shifts 
of the relaxation curves towards lower mi in figure 8 as ro increases. The figure shows 
that once the temperature dependence of the jump rate distribution is taken into account the 
principal difference between the ordered and disordered cases lies in the asymmetry of the 
dip in the relaxation time. 

In figures 1O(a) (c = 0.1) and IO@) (c = 0.9) the value of ? is larger and smaller 
respectively than its value for c = 0.5 because of the opposite direction of the temperature 
dependence off (0, ro)'-2e at high and low concentrations in the manner shown in figure 3. 
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Consequently, the shift of the minimum is slightly more pronounced in figure 1O(a) and 
less in figure 10(b). The temperature dependence of 2 also changes so that the effective 
activation energy in figure 1Na) is greater than that in figure lO(c) and this is reflected in 
the difference in the width of the relaxation curves. It can also be seen that the asymmetry 
increases with c. 

The main parameter which determines the form of the curves in figures lO(aHc) is ro. 
If TO(@ = 1) is chosen to be 300 K, then comes out to be -0.25 eV and the minima 
occur in the region of 370-380 K. These values are commensurate with those derived from 
experimental relaxation rates of hydrogen in amorphous metals [5,  11, 121. The value of 
ro = SO is equivalent to 6 E j 3  = 0.4, which is somewhat larger than the spread of activation 
energies found in internal friction measurements (13, 14). It would appear therefore that 
these parameters give the largest change with respect to the ordered case in the TI curves 
which is consistent with the experimental data. In fact, to increase ro to any significant 
extent would require a larger basic lattice in the simulation in order to be certain that there 
were a reasonable number of spins within a given Su. 

These results show that, once its temperature dependence has been taken into account, 
the distribution of jump rates does not introduce any significant changes to the dip in the 
relaxation time apart from the asymmetry noted above. The changes in the width of the dip 
simply reflect differences in the effective activation energy. The asymmetry arises from three 
different causes, the temperature dependence of f(0, ro), the asymnety of the relaxation 
curves in figures 7-9 and the fact that drawing the locus through these curves in the manner 
indicated above results in a greater asymptotic slope at higher temperatures. The first cause 
may be disregarded since, as pointed out in the section on diffusion, the departure from the 
Anhenius form over the temperature range of figure 10 is not significant. The third cause is 
also present in the calculations of Adnani er al [7] and the new results confirm the general 
characteristics of the relaxation rate found by the earlier work. The main difference is that 
the asymmetry is more pronounced in the present work because of the features indicated in 
the second cause given above. As pointed out in an earlier paragraph, these features arise 
in turn from the initial parts of the spin correlation functions, which are different in the two 
calculations. 

The MC simulation has demonstrated that the best way of measuring the distribution of 
jump rates in a disordered metal-hydrogen system by means of nuclear magnetic relaxation 
is to measure the relaxation rate over a wide range of Larmor frequency at a given 
temperature. The method is technically demanding and probably requires the use of more 
than one spectrometer. It is unlikely that the simpler procedure of measuring as a 
function of temperature will set any value on the width of the distribution. However, the 
presence of the distribution may be detected through the asymmetry of the dip in TL, which 
increases with spin concentration, and the change in the effective activation energy, which 
diminishes with concentration. These features of the nuclear magnetic relaxation, which 
have been clearly established in the present work, could not have been predicted in earlier 
calculations. 
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